quarta-feira, 19 de março de 2014

The Big Bang theory developed from observations of the structure of the universe and from theoretical considerations. In 1912 Vesto Slipher measured the first Doppler shift of a "spiral nebula" (spiral nebula is the obsolete term for spiral galaxies), and soon discovered that almost all such nebulae were receding from Earth. He did not grasp the cosmological implications of this fact, and indeed at the time it was highly controversial whether or not these nebulae were "island universes" outside our Milky Way.[43][44] Ten years later, Alexander Friedmann, a Russian cosmologist and mathematician, derived the Friedmann equations from Albert Einstein's equations of general relativity, showing that the universe might be expanding in contrast to the static universe model advocated by Einstein at that time.[45] In 1924 Edwin Hubble's measurement of the great distance to the nearest spiral nebulae showed that these systems were indeed other galaxies. Independently deriving Friedmann's equations in 1927, Georges Lemaître, a Belgian physicist and Roman Catholic priest, proposed that the inferred recession of the nebulae was due to the expansion of the universe.[46]
In 1931 Lemaître went further and suggested that the evident expansion of the universe, if projected back in time, meant that the further in the past the smaller the universe was, until at some finite time in the past all the mass of the universe was concentrated into a single point, a "primeval atom" where and when the fabric of time and space came into existence.[47]
Starting in 1924, Hubble painstakingly developed a series of distance indicators, the forerunner of the cosmic distance ladder, using the 100-inch (2,500 mm) Hooker telescope at Mount Wilson Observatory. This allowed him to estimate distances to galaxies whose redshifts had already been measured, mostly by Slipher. In 1929 Hubble discovered a correlation between distance and recession velocity—now known as Hubble's law.[15][48] Lemaître had already shown that this was expected, given the Cosmological Principle.[34]
In the 1920s and 1930s almost every major cosmologist preferred an eternal steady state universe, and several complained that the beginning of time implied by the Big Bang imported religious concepts into physics; this objection was later repeated by supporters of the steady state theory.[49] This perception was enhanced by the fact that the originator of the Big Bang theory, Monsignor Georges Lemaître, was a Roman Catholic priest.[50] Arthur Eddington agreed with Aristotle that the universe did not have a beginning in time, viz., that matter is eternal. A beginning in time was "repugnant" to him.[51][52] Lemaître, however, thought that
If the world has begun with a single quantum, the notions of space and time would altogether fail to have any meaning at the beginning; they would only begin to have a sensible meaning when the original quantum had been divided into a sufficient number of quanta. If this suggestion is correct, the beginning of the world happened a little before the beginning of space and time.[53]
During the 1930s other ideas were proposed as non-standard cosmologies to explain Hubble's observations, including the Milne model,[54] the oscillatory universe (originally suggested by Friedmann, but advocated by Albert Einstein and Richard Tolman)[55] and Fritz Zwicky's tired light hypothesis.[56]
After World War II, two distinct possibilities emerged. One was Fred Hoyle's steady state model, whereby new matter would be created as the universe seemed to expand. In this model the universe is roughly the same at any point in time.[57] The other was Lemaître's Big Bang theory, advocated and developed by George Gamow, who introduced big bang nucleosynthesis (BBN)[58] and whose associates, Ralph Alpher and Robert Herman, predicted the cosmic microwave background radiation (CMB).[59] Ironically, it was Hoyle who coined the phrase that came to be applied to Lemaître's theory, referring to it as "this big bang idea" during a BBC Radio broadcast in March 1949.[60][notes 4] For a while, support was split between these two theories. Eventually, the observational evidence, most notably from radio source counts, began to favor Big Bang over Steady State. The discovery and confirmation of the cosmic microwave background radiation in 1964[62] secured the Big Bang as the best theory of the origin and evolution of the cosmos. Much of the current work in cosmology includes understanding how galaxies form in the context of the Big Bang, understanding the physics of the universe at earlier and earlier times, and reconciling observations with the basic theory.
Significant progress in Big Bang cosmology have been made since the late 1990s as a result of advances in telescope technology as well as the analysis of data from satellites such as COBE,[63] the Hubble Space Telescope and WMAP.[64] Cosmologists now have fairly precise and accurate measurements of many of the parameters of the Big Bang model, and have made the unexpected discovery that the expansion of the universe appears to be accelerating.